Numerical simulation of a flow over and through porous layers of large porosity

نویسندگان

  • P. D. Antoniadis
  • M. V. Papalexandris
چکیده

In this talk we present a continuum model and numerical results for transient flows over and through porous media. First, we briefly discuss the derivation of the model and present an algorithm for its numerical treatment. Subsequently, we present results from direct numerical simulations for developing flows over porous layers of large porosity. Due to the steep velocity gradients across the interface between the porous layer and the clear fluid, a KelvinHelmholtz instability is onset that leads to the formation of a vortex-shedding shear layer after sufficient time. Important characteristics of this layer such as growth rate, selfsimilarity and statistics of the fluctuating velocities are discussed. Finally, we present results from a parametric study with respect to the porosity of the medium. This study has potential applications in the simulation of forest fire spread, in which the vegetation is modeled as a continuum porous medium. Keywords— Porous media, Kelvin-Helmholtz instability, shear layers, flow over vegetation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Exponentially Variable Viscosity and Permeability on Blasius Flow of Carreau Nano Fluid over an Electromagnetic Plate through a Porous Medium

The present investigation draws scholars' attention to the effect of exponential variable viscosity modeled by Vogel and variable permeability on stagnation point flow of Carreau Nanofluid over an electromagnetic plate through a porous medium. Brownian motion and thermophoretic diffusion mechanism are taken into consideration. An efficient fourth-order RK method along with shooting technique ar...

متن کامل

Absolute Permeability Calculation by Direct Numerical Simulation in Porous Media

Simulating fluid flow at micro level is an ongoing problem. Simplified macroscopic flow models like Darcy’s law is unable to estimate fluid dynamic properties of porous media. The digital sample reconstruction by high resolution X-ray computed tomography scanning and fluid-dynamics simulation, together with the increasing power of super-computers, allow to carry out pore-scale simulations throu...

متن کامل

Numerical simulation of a three-layered radiant porous heat exchanger including lattice Boltzmann simulation of fluid flow

This paper deals with the hydrodynamic and thermal analysis of a new type of porous heat exchanger (PHE). This system operates based on energy conversion between gas enthalpy and thermal radiation. The proposed PHE has one high temperature (HT) and two heat recovery (HR1 and HR2) sections. In HT section, the enthalpy of flowing high temperature gas flow that is converted to thermal radiation em...

متن کامل

Numerical Simulation of Non-Uniform Gas Diffusion Layer Porosity Effect on Polymer Electrolyte Membrane Fuel Cell Performance

Gas diffusion layers are essential components of proton exchange membrane fuel cell since the reactants should pass through these layers. Mass transport in these layers is highly dependent on porosity. Many of simulations have assumed, for simplicity, the porosity of GDL is constant, but in practice, there is a considerable variation in porosity along gas diffusion layers. In the present study ...

متن کامل

Numerical Solution of MHD Flow over a Nonlinear Porous Stretching Sheet

In this paper, the MagnetoHydroDynamic (MHD) boundary layer flow over a nonlinear porous stretching sheet is investigated by employing the Homotopy Perturbation Transform Method (HPTM) and the Pade´ approximation. The numerical solution of the governing non-linear problem is developed. Comparison of the present solution is made with the existing solution and excellent agreement is noted. Gr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012